Streamlining Model Deployment with ZenML and BentoML
This blog post discusses the integration of ZenML and BentoML in machine learning workflows, highlighting their synergy that simplifies and streamlines model deployment. ZenML is an open-source MLOps framework designed to create portable, production-ready pipelines, while BentoML is an open-source framework for machine learning model serving. When combined, these tools allow data scientists and ML engineers to streamline their workflows, focusing on building better models rather than managing deployment infrastructure. The combination offers several advantages, including simplified model packaging, local and container-based deployment, automatic versioning and tracking, cloud readiness, standardized deployment workflow, and framework-agnostic serving.
12 Factors of Reproducible Machine Learning in Production
A set of guiding principles to help you better productionize your machine learning models.
Keep the lint out of your ML pipelines! Use Deepchecks to build and maintain better models with ZenML!
Test automation is tedious enough with traditional software engineering, but machine learning complexities can make it even less appealing. Using Deepchecks with ZenML pipelines can get you started as quickly as it takes you to read this article.