zenml

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

New Features: Dashboard Upgrades, Various Bugfixes and Improvements, Documentation Updates and More!

ZenML 0.75.0 introduces dashboard enhancements that allow users to create and update stack components directly from the dashboard, along with improvements to service connectors, model artifact handling, and documentation. This release streamlines ML workflows with better component management capabilities, enhanced SageMaker integration, and critical fixes for custom flavor components and sorting logic.
Read post

ZenML: Your Open-Source Path Forward After cnvrg.io

Learn how to migrate from cnvrg.io to ZenML's open-source MLOps framework. Discover a sustainable alternative before Intel Tiber AI Studio's 2025 end-of-life. Get started with your MLOps transition today.
Read post

Multimodal LLM Pipelines: From Data Ingestion to Real-Time Inference

Learn how to build, fine-tune, and deploy multimodal LLMs using ZenML. Explore LLMOps best practices for deployment, real-time inference and model management.
Read post

New Features: Performance Upgrade, Improvements for Major Cloud Providers, and More!

ZenML 0.74.0 introduces key cloud provider features including SageMaker pipeline scheduling, Azure Container Registry implicit authentication, and Vertex AI persistent resource support. The release adds API Tokens for secure, time-boxed API authentication while delivering comprehensive improvements to timezone handling, database performance, and Helm chart deployments.
Read post

Newsletter Edition #11 - GenAI Meets MLOps: New Roles, New Rules

Our monthly roundup: AI Infrastructure Summit insights, new experiment comparison tools, and a deep dive into AI Engineering roles
Read post

From Chaos to Control: A Guide to Scaling MLOps Automation

Discover how organizations can transform their machine learning operations from manual, time-consuming processes into streamlined, automated workflows. This comprehensive guide explores common challenges in scaling MLOps, including infrastructure management, model deployment, and monitoring across different modalities. Learn practical strategies for implementing reproducible workflows, infrastructure abstraction, and comprehensive observability while maintaining security and compliance. Whether you're dealing with growing pains in ML operations or planning for future scale, this article provides actionable insights for building a robust, future-proof MLOps foundation.
Read post

Improvements: Enhanced Artifacts Versioning, Scalability and Metadata Management

ZenML 0.70.0 has launched with major improvements but requires careful handling during upgrade due to significant database schema changes. Key highlights include enhanced artifact versioning with batch processing capabilities, improved scalability through reduced server requests, unified metadata management via the new log_metadata method, and flexible filtering with the new oneof operator. The release also features expanded documentation covering finetuning and LLM/ML engineering resources. Due to the database changes, users must back up their data and test the upgrade in a non-production environment before deploying to production systems.
Read post

Security Advisory: Important Update for ZenML Pro Users

The ZenML team has addressed a security finding in ZenML Pro's role management system, reported by JFrog Security Research team. This update provides important information for users regarding role-based access controls and recommended actions
Read post

Elevate Your Cloud MLOps with ZenML

Why use ZenML alongside AWS / GCP / Azure MLOps platforms? Let's dive into why ZenML complements and enhance existing cloud MLOps infrastructure.
Read post
Oops, there are no matching results for your search.