zenml

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Streamlining Model Deployment with ZenML and BentoML

This blog post discusses the integration of ZenML and BentoML in machine learning workflows, highlighting their synergy that simplifies and streamlines model deployment. ZenML is an open-source MLOps framework designed to create portable, production-ready pipelines, while BentoML is an open-source framework for machine learning model serving. When combined, these tools allow data scientists and ML engineers to streamline their workflows, focusing on building better models rather than managing deployment infrastructure. The combination offers several advantages, including simplified model packaging, local and container-based deployment, automatic versioning and tracking, cloud readiness, standardized deployment workflow, and framework-agnostic serving.
Read post

Empowering ZenML Pro Infrastructure Management: Our Journey from Spacelift to ArgoCD

The combination of ZenML and Neptune can streamline machine learning workflows and provide unprecedented visibility into experiments. ZenML is an extensible framework for creating production-ready pipelines, while Neptune is a metadata store for MLOps. When combined, these tools offer a robust solution for managing the entire ML lifecycle, from experimentation to production. The combination of these tools can significantly accelerate the development process, especially when working with complex tasks like language model fine-tuning. This integration offers the ability to focus more on innovating and less on managing the intricacies of your ML pipelines.
Read post

Navigating the MLOps Galaxy: ZenML meets Neptune for advanced Experiment Tracking

The combination of ZenML and Neptune can streamline machine learning workflows and provide unprecedented visibility into experiments. ZenML is an extensible framework for creating production-ready pipelines, while Neptune is a metadata store for MLOps. When combined, these tools offer a robust solution for managing the entire ML lifecycle, from experimentation to production. The combination of these tools can significantly accelerate the development process, especially when working with complex tasks like language model fine-tuning. This integration offers the ability to focus more on innovating and less on managing the intricacies of your ML pipelines.
Read post

Using ZenML+ Databricks to Supercharge LLM Development

The integration of ZenML and Databricks streamlines LLM development and deployment processes, offering scalability, reproducibility, efficiency, collaboration, and monitoring capabilities. This approach enables data scientists and ML engineers to focus on innovation.
Read post

Boost Your MLOps Efficiency: Integrate ZenML and Comet for Better Experiment Tracking

This blog post discusses the integration of ZenML and Comet, an open-source machine learning pipeline management platform, to enhance the experimentation process. ZenML is an extensible framework for creating portable, production-ready pipelines, while Comet is a platform for tracking, comparing, explaining, and optimizing experiments and models. The combination offers seamless experiment tracking, enhanced visibility, simplified workflow, improved collaboration, and flexible configuration. The process involves installing ZenML and enabling Comet integration, registering the Comet experiment tracker in the ZenML stack, and customizing experiment settings.
Read post

AWS MLOps Made Easy: Integrating ZenML for Seamless Workflows

Machine Learning Operations (MLOps) is crucial in today's tech landscape, even with the rise of Large Language Models (LLMs). Implementing MLOps on AWS, leveraging services like SageMaker, ECR, S3, EC2, and EKS, can enhance productivity and streamline workflows. ZenML, an open-source MLOps framework, simplifies the integration and management of these services, enabling seamless transitions between AWS components. MLOps pipelines consist of Orchestrators, Artifact Stores, Container Registry, Model Deployers, and Step Operators. AWS offers a suite of managed services, such as ECR, S3, and EC2, but careful planning and configuration are required for a cohesive MLOps workflow.
Read post

Newsletter Edition #7 - Notebooks in Production: The eternal MLOps debate

A new ZenML newsletter featuring Istanbul cooking adventures, faster docker builds, and more
Read post

Supercharge Open Source ML Workflows with ZenML And Skypilot

The combination of ZenML and SkyPilot offers a robust solution for managing ML workflows.
Read post

How to Finetune Phi 3.5 with ZenML

Master cloud-based LLM finetuning: Set up infrastructure, run pipelines, and manage experiments with ZenML's Model Control Plane for Microsoft's latest Phi model.
Read post
Oops, there are no matching results for your search.