FloraCast is a production-ready template that shows how to build a forecasting platform—config-driven experiments, model versioning/staging, batch inference, and scheduled retrains—with ZenML and Darts.
As Large Language Models (LLMs) revolutionize software development, the challenge of ensuring their reliable performance becomes increasingly crucial. This comprehensive guide explores the landscape of LLM evaluation, from specialized platforms like Langfuse and LangSmith to cloud provider solutions from AWS, Google Cloud, and Azure. Learn how to implement effective evaluation strategies, automate testing pipelines, and choose the right tools for your specific needs. Whether you're just starting with manual evaluations or ready to build sophisticated automated pipelines, discover how to gain confidence in your LLM applications through robust evaluation practices.
Discover how leading ML consulting firms are mastering the art of standardizing MLOps practices across diverse client environments while maintaining flexibility and efficiency. This comprehensive guide explores practical strategies for building reusable assets, managing multi-cloud deployments, and establishing robust MLOps frameworks that adapt to various enterprise requirements. Learn how to balance standardization with client-specific needs, implement effective knowledge transfer processes, and scale your ML consulting practice without compromising on quality or security.
Discover why the lack of standardized MLOps practices is silently draining your data team's productivity and resources. This eye-opening analysis reveals how seemingly harmless differences in ML development approaches can cascade into significant organizational challenges, from knowledge transfer barriers to mounting technical debt. Learn practical strategies for implementing MLOps standards that boost efficiency without stifling innovation, and understand why addressing these hidden costs now is crucial for scaling your ML operations successfully. Perfect for data leaders and ML practitioners looking to optimize their team's workflow and maximize ROI on ML initiatives.
Discover how successful retail organizations navigate the complex journey from proof-of-concept to production-ready MLOps infrastructure. This comprehensive guide explores essential strategies for scaling machine learning operations, covering everything from standardized pipeline architecture to advanced model management. Learn practical solutions for handling model proliferation, managing multiple environments, and implementing robust governance frameworks. Whether you're dealing with a growing model fleet or planning for future scaling challenges, this post provides actionable insights for building sustainable, enterprise-grade MLOps systems in retail.
ZenML 0.70.0 has launched with major improvements but requires careful handling during upgrade due to significant database schema changes. Key highlights include enhanced artifact versioning with batch processing capabilities, improved scalability through reduced server requests, unified metadata management via the new log_metadata method, and flexible filtering with the new oneof operator. The release also features expanded documentation covering finetuning and LLM/ML engineering resources. Due to the database changes, users must back up their data and test the upgrade in a non-production environment before deploying to production systems.
ZenML 0.68.0 introduces several major enhancements including the return of stack components visualization on the dashboard, powerful client-side caching for improved performance, and a streamlined onboarding process that unifies starter and production setups. The release also brings improved artifact management with the new `register_artifact` function, enhanced BentoML integration (v1.3.5), and comprehensive documentation updates, while deprecating legacy features including Python 3.8 support.
The combination of ZenML and Neptune can streamline machine learning workflows and provide unprecedented visibility into experiments. ZenML is an extensible framework for creating production-ready pipelines, while Neptune is a metadata store for MLOps. When combined, these tools offer a robust solution for managing the entire ML lifecycle, from experimentation to production. The combination of these tools can significantly accelerate the development process, especially when working with complex tasks like language model fine-tuning. This integration offers the ability to focus more on innovating and less on managing the intricacies of your ML pipelines.
This blog post discusses the integration of ZenML and BentoML in machine learning workflows, highlighting their synergy that simplifies and streamlines model deployment. ZenML is an open-source MLOps framework designed to create portable, production-ready pipelines, while BentoML is an open-source framework for machine learning model serving. When combined, these tools allow data scientists and ML engineers to streamline their workflows, focusing on building better models rather than managing deployment infrastructure. The combination offers several advantages, including simplified model packaging, local and container-based deployment, automatic versioning and tracking, cloud readiness, standardized deployment workflow, and framework-agnostic serving.
By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.