Discover how embeddings power modern search and recommendation systems with LLMs, using case studies from the LLMOps Database. From RAG systems to personalized recommendations, learn key strategies and best practices for building intelligent applications that truly understand user intent and deliver relevant results.
Explore real-world applications of Retrieval Augmented Generation (RAG) through case studies from leading companies in the ZenML LLMOps Database. Learn how RAG enhances LLM applications with external knowledge sources, examining implementation strategies, challenges, and best practices for building more accurate and informed AI systems.
Explore key insights and patterns from 300+ real-world LLM deployments, revealing how companies are successfully implementing AI in production. This comprehensive analysis covers agent architectures, deployment strategies, data infrastructure, and technical challenges, drawing from ZenML's LLMOps Database to highlight practical solutions in areas like RAG, fine-tuning, cost optimization, and evaluation frameworks.
As organizations rush to adopt generative AI, several major tech companies have proposed maturity models to guide this journey. While these frameworks offer useful vocabulary for discussing organizational progress, they should be viewed as descriptive rather than prescriptive guides. Rather than rigidly following these models, organizations are better served by focusing on solving real problems while maintaining strong engineering practices, building on proven DevOps and MLOps principles while adapting to the unique challenges of GenAI implementation.
As Large Language Models (LLMs) revolutionize software development, the challenge of ensuring their reliable performance becomes increasingly crucial. This comprehensive guide explores the landscape of LLM evaluation, from specialized platforms like Langfuse and LangSmith to cloud provider solutions from AWS, Google Cloud, and Azure. Learn how to implement effective evaluation strategies, automate testing pipelines, and choose the right tools for your specific needs. Whether you're just starting with manual evaluations or ready to build sophisticated automated pipelines, discover how to gain confidence in your LLM applications through robust evaluation practices.