llmops-database

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

CrewAI vs AutoGen: Which One Is the Best Framework to Build AI Agents and Applications

In this Crewai vs Autogen article, we explain the difference between the two and conclude which one is the best to build AI agents and applications.
Read post

The Annotated Guide to the Maven Evals Course (by way of the LLMOps Database)

Lessons from the Maven Evals course are combined with 50+ real-world case studies from ZenML's LLMOps Database to show how companies like Discord, GitHub, and Coursera implement the Three Gulfs model and Analyze-Measure-Improve lifecycle to transform failing LLM systems into production-ready applications.
Read post

LLMOps in Production: 287 More Case Studies of What Actually Works

287 latest curated summaries of LLMOps use cases in industry, from tech to healthcare to finance and more. This blog also highlights some of the trends observed across the case studies.
Read post

LLMOps in Production: 457 Case Studies of What Actually Works

A comprehensive overview of lessons learned from the world's largest database of LLMOps case studies (457 entries as of January 2025), examining how companies implement and deploy LLMs in production. Through nine thematic blog posts covering everything from RAG implementations to security concerns, this article synthesizes key patterns and anti-patterns in production GenAI deployments, offering practical insights for technical teams building LLM-powered applications.
Read post

Production LLM Security: Real-world Strategies from Industry Leaders 🔐

Learn how leading companies like Dropbox, NVIDIA, and Slack tackle LLM security in production. This comprehensive guide covers practical strategies for preventing prompt injection, securing RAG systems, and implementing multi-layered defenses, based on real-world case studies from the LLMOps database. Discover battle-tested approaches to input validation, data privacy, and monitoring for building secure AI applications.
Read post

Optimizing LLM Performance and Cost: Squeezing Every Drop of Value

This comprehensive guide explores strategies for optimizing Large Language Model (LLM) deployments in production environments, focusing on maximizing performance while minimizing costs. Drawing from real-world examples and the LLMOps database, it examines three key areas: model selection and optimization techniques like knowledge distillation and quantization, inference optimization through caching and hardware acceleration, and cost optimization strategies including prompt engineering and self-hosting decisions. The article provides practical insights for technical professionals looking to balance the power of LLMs with operational efficiency.
Read post

The Evaluation Playbook: Making LLMs Production-Ready

A comprehensive exploration of real-world lessons in LLM evaluation and quality assurance, examining how industry leaders tackle the challenges of assessing language models in production. Through diverse case studies, the post covers the transition from traditional ML evaluation, establishing clear metrics, combining automated and human evaluation strategies, and implementing continuous improvement cycles to ensure reliable LLM applications at scale.
Read post

Prompt Engineering & Management in Production: Practical Lessons from the LLMOps Database

Practical lessons on prompt engineering in production settings, drawn from real LLMOps case studies. It covers key aspects like designing structured prompts (demonstrated by Canva's incident review system), implementing iterative refinement processes (shown by Fiddler's documentation chatbot), optimizing prompts for scale and efficiency (exemplified by Assembled's test generation system), and building robust management infrastructure (as seen in Weights & Biases' versioning setup). Throughout these examples, the focus remains on systematic improvement through testing, human feedback, and error analysis, while balancing performance with operational costs and complexity.
Read post

LLM Agents in Production: Architectures, Challenges, and Best Practices

An in-depth exploration of LLM agents in production environments, covering key architectures, practical challenges, and best practices. Drawing from real-world case studies in the LLMOps Database, this article examines the current state of AI agent deployment, infrastructure requirements, and critical considerations for organizations looking to implement these systems safely and effectively.
Read post
Oops, there are no matching results for your search.