llmops-database

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Building Advanced Search, Retrieval, and Recommendation Systems with LLMs

Discover how embeddings power modern search and recommendation systems with LLMs, using case studies from the LLMOps Database. From RAG systems to personalized recommendations, learn key strategies and best practices for building intelligent applications that truly understand user intent and deliver relevant results.
Read post

Building LLM Applications that Know What They're Talking About 🔓🧠

Explore real-world applications of Retrieval Augmented Generation (RAG) through case studies from leading companies in the ZenML LLMOps Database. Learn how RAG enhances LLM applications with external knowledge sources, examining implementation strategies, challenges, and best practices for building more accurate and informed AI systems.
Read post

LLMOps Lessons Learned: Navigating the Wild West of Production LLMs 🚀

Explore key insights and patterns from 300+ real-world LLM deployments, revealing how companies are successfully implementing AI in production. This comprehensive analysis covers agent architectures, deployment strategies, data infrastructure, and technical challenges, drawing from ZenML's LLMOps Database to highlight practical solutions in areas like RAG, fine-tuning, cost optimization, and evaluation frameworks.
Read post

Demystifying LLMOps: A Practical Database of Real-World Generative AI Implementations

The LLMOps Database offers a curated collection of 300+ real-world generative AI implementations, providing technical teams with practical insights into successful LLM deployments. This searchable resource includes detailed case studies, architectural decisions, and AI-generated summaries of technical presentations to help bridge the gap between demos and production systems.
Read post
Oops, there are no matching results for your search.