As our AI/ML projects evolve and mature, our processes and tooling also need to keep up with the growing demand for automation, quality and performance. But how can we possibly reconcile our need for flexibility with the overwhelming complexity of a continuously evolving ecosystem of tools and technologies? MLOps frameworks promise to deliver the ideal balance between flexibility, usability and maintainability, but not all MLOps frameworks are created equal. In this post, I take a critical look at what makes an MLOps framework worth using and what you should expect from one.
ZenML combines forces with Great Expectations to add data validation to the list of continuous processes automated with MLOps. Discover why data validation is an important part of MLOps and try the new integration with a hands-on tutorial.
The MLOps movement and associated new tooling is starting to help tackle the very real technical debt problems associated with machine learning in production.