An in-depth exploration of LLM agents in production environments, covering key architectures, practical challenges, and best practices. Drawing from real-world case studies in the LLMOps Database, this article examines the current state of AI agent deployment, infrastructure requirements, and critical considerations for organizations looking to implement these systems safely and effectively.
Discover how embeddings power modern search and recommendation systems with LLMs, using case studies from the LLMOps Database. From RAG systems to personalized recommendations, learn key strategies and best practices for building intelligent applications that truly understand user intent and deliver relevant results.
Explore real-world applications of Retrieval Augmented Generation (RAG) through case studies from leading companies in the ZenML LLMOps Database. Learn how RAG enhances LLM applications with external knowledge sources, examining implementation strategies, challenges, and best practices for building more accurate and informed AI systems.
As organizations rush to adopt generative AI, several major tech companies have proposed maturity models to guide this journey. While these frameworks offer useful vocabulary for discussing organizational progress, they should be viewed as descriptive rather than prescriptive guides. Rather than rigidly following these models, organizations are better served by focusing on solving real problems while maintaining strong engineering practices, building on proven DevOps and MLOps principles while adapting to the unique challenges of GenAI implementation.