ZenML recently added an integration with Evidently, an open-source tool that allows you to monitor your data for drift (among other things). This post showcases the integration alongside some of the other parts of Evidently that we like.
Explore how ZenML, an MLOps framework, can be used with large language models (LLMs) like GPT-4 to analyze and version data from databases like Supabase. In this case study, we examine the you-tldr.com website, showcasing ZenML pipelines asynchronously processing video data and generating summaries with GPT-4. Understand how to tackle large language model limitations by versioning data and comparing summaries to unlock your data's potential. Learn how this approach can be easily adapted to work with other databases and LLMs, providing flexibility and versatility for your specific needs.
We released an updated way to deploy MLOps infrastructure, building on the success of the `mlops-stack` repo and its stack recipes. All the new goodies are available via the `mlstacks` Python package.