This week I spoke with Ben Wilson, author of 'Machine Learning Engineering in Action', a jam-backed guide to all the lessons that Ben has learned over his years working to help companies get models out into the world and run them in production.
This week I spoke with Iva Gumnishka, the founder of Humans in the Loop. They are an organization that provides data annotation and collection services. Their teams are primarily made up of those who have been affected by conflict and now are asylum seekers or refugees.
This week I spoke with Johnny Greco, a data scientist working at Radiology Partners. Johnny transitioned into his current work from a career as an academic — working in astronomy — where also worked in the open-source space to build a really interesting synthetic image data project.
Test automation is tedious enough with traditional software engineering, but machine learning complexities can make it even less appealing. Using Deepchecks with ZenML pipelines can get you started as quickly as it takes you to read this article.
As we outgrew our initial template Github Action workflow, here's the five things we added to our Github Action arsenal to fit our growing needs: Caching, Reusable Workflows, Composite Actions, Comment Triggers and Concurrency Management.
Learn how to use ZenML pipelines and BentoML to easily deploy machine learning models, be it on local or cloud environments. We will show you how to train a model using ZenML, package it with BentoML, and deploy it to a local machine or cloud provider. By the end of this post, you will have a better understanding of how to streamline the deployment of your machine learning models using ZenML and BentoML.
Use MLflow Tracking to automatically ensure that you're capturing data, metadata and hyperparameters that contribute to how you are training your models. Use the UI interface to compare experiments, and let ZenML handle the boring setup details.
Getting started with your ML project work is easier than ever with Project Templates, a new way to generate scaffolding and a skeleton project structure based on best practices.