mlops

The latest news, opinions and technical guides from ZenML.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

8 Alternatives to Kubeflow for ML Workflow Orchestration (and Why You Might Switch)

8 practical alternatives to Kubeflow that address its common challenges of complexity and operational overhead. From Argo Workflows' lightweight Kubernetes approach to ZenML's developer-friendly experience, we analyze each tool's strengths across infrastructure needs, developer experience, and ML-specific capabilities—helping you find the right orchestration solution that removes barriers rather than creating them for your ML workflows.
Read post

Chat With Your ML Pipelines: Introducing the ZenML MCP Server

Discover the new ZenML MCP Server that brings conversational AI to ML pipelines. Learn how this implementation of the Model Context Protocol allows natural language interaction with your infrastructure, enabling query capabilities, pipeline analytics, and run management through simple conversation. Explore current features, engineering decisions, and future roadmap for this timely addition to the rapidly evolving MCP ecosystem.
Read post

ZenML: Your Open-Source Path Forward After cnvrg.io

Learn how to migrate from cnvrg.io to ZenML's open-source MLOps framework. Discover a sustainable alternative before Intel Tiber AI Studio's 2025 end-of-life. Get started with your MLOps transition today.
Read post

Understanding the AI Act: February 2025 Updates and Implications

The EU AI Act, now partially in effect as of February 2025, introduces comprehensive regulations for artificial intelligence systems with significant implications for global AI development. This landmark legislation categorizes AI systems based on risk levels - from prohibited applications to high-risk and limited-risk systems - establishing strict requirements for transparency, accountability, and compliance. The Act imposes substantial penalties for violations, up to €35 million or 7% of global turnover, and provides a clear timeline for implementation through 2027. Organizations must take immediate action to audit their AI systems, implement robust governance infrastructure, and enhance development practices to ensure compliance, with tools like ZenML offering technical solutions for meeting these regulatory requirements.
Read post

AI Engineering vs ML Engineering: Evolving Roles in the GenAI Era

The rise of Generative AI has shifted the roles of AI Engineering and ML Engineering, with AI Engineers integrating generative AI into software products. This shift requires clear ownership boundaries and specialized expertise. A proposed solution is layer separation, separating concerns into two distinct layers: Application (AI Engineers/Software Engineers), Frontend development, Backend APIs, Business logic, User experience, and ML (ML Engineers). This allows AI Engineers to focus on user experience while ML Engineers optimize AI systems.
Read post

Demystifying LLMOps: A Practical Database of Real-World Generative AI Implementations

The LLMOps Database offers a curated collection of 300+ real-world generative AI implementations, providing technical teams with practical insights into successful LLM deployments. This searchable resource includes detailed case studies, architectural decisions, and AI-generated summaries of technical presentations to help bridge the gap between demos and production systems.
Read post

Everything you ever wanted to know about LLMOps Maturity Models

As organizations rush to adopt generative AI, several major tech companies have proposed maturity models to guide this journey. While these frameworks offer useful vocabulary for discussing organizational progress, they should be viewed as descriptive rather than prescriptive guides. Rather than rigidly following these models, organizations are better served by focusing on solving real problems while maintaining strong engineering practices, building on proven DevOps and MLOps principles while adapting to the unique challenges of GenAI implementation.
Read post

How to Break Free from MLOps Orchestration Lock-in: A Technical Guide

Unlock the potential of your ML infrastructure by breaking free from orchestration tool lock-in. This comprehensive guide explores proven strategies for building flexible MLOps architectures that adapt to your organization's evolving needs. Learn how to maintain operational efficiency while supporting multiple orchestrators, implement robust security measures, and create standardized pipeline definitions that work across different platforms. Perfect for ML engineers and architects looking to future-proof their MLOps infrastructure without sacrificing performance or compliance.
Read post

Cognitive Load in MLOps: Why Your Data Scientists Need Infrastructure Abstraction

Discover why cognitive load is the hidden barrier to ML success and how infrastructure abstraction can revolutionize your data science team's productivity. This comprehensive guide explores the real costs of infrastructure complexity in MLOps, from security challenges to the pitfalls of home-grown solutions. Learn practical strategies for creating effective abstractions that let data scientists focus on what they do best – building better models – while maintaining robust security and control. Perfect for ML leaders and architects looking to scale their machine learning initiatives efficiently.
Read post
Oops, there are no matching results for your search.