Analysis of 1,200 production LLM deployments reveals six key patterns separating successful teams from those stuck in demo mode: context engineering over prompt engineering, infrastructure-based guardrails, rigorous evaluation practices, and the recognition that software engineering fundamentals—not frontier models—remain the primary predictor of success.
Analysis of 1,200+ production LLM deployments reveals that context engineering, architectural guardrails, and traditional software engineering skills—not frontier models or prompt tricks—separate teams shipping reliable AI systems from those stuck in demo purgatory.